Socket.IO & Open
Academy

making fast human (data)-centric
interactions on the webs

What is Socket.IO?

. abstract protocol for event-based real-
time applications on the web

. reference implementation in node.js

. uses the most advanced real-time data
transfer technology available to a specific
client under the hood

How does “real-time” web programming work?

e Short Polling
o Repeatedly ask server “Any new data?”
o Server responds every time

e Long Polling

o Ask server “Any new data?” and wait patiently for

response
o Server only responds when data is ready
e WebSockets

o Open an instant 2-way communication channel
between client and server

Why use Socket.IO?

. Each browser supports a different subset
of "real-time" approaches, so making a
website for everyone to use is hard.

. Socket.IO abstracts the differences into
an easy-to-use client & server model for

the programmer.

How?

e Server:
10.on(‘connect’, function (socket) {
socket.emit (‘thello’, ‘friend’);
b) g

e Client:
socket.on(‘Yhello’, function (name) {

assert (name == ‘friend’):;
socket.emit (‘hey’, ‘you’);

b)) s

Anatomy of Socket.IO

Socket.IO

socket.io

I /

high level & heavier.

custom events,
hamespaces, rooms,
callbacks

Engine.IO

socket.io-client

englne io

| /

socket.io-parser

socket.io-protocol

transport-level
abstraction across
realtime technologies

engine.io-client

engine.io-parser

engine.io-protocol

Time 4 us & our work

« Columbia’'s "Team IO"
o Brian Shin
o Adam Reis
o Kevin Roark

« From facebook and donuts ——> New York
and ... bagels — all in real-time

Goals

 Prepare the release of Socket.IO 1.0
o Its beenat 0.9.x for ~ 2 years.
o (hint) 1.0 is almost completel
o https://github.com/LearnBoost/socket.io/

 Add binary support

. Fast, reliable testing to ensure that new
versions work properly (server && client)

. Make some issues go away

https://github.com/LearnBoost/socket.io/
https://github.com/LearnBoost/socket.io/

Adam’s Work

Let’'s make assertions more useful

// test2.7s
var assert = require(‘'assert’');

var something = 'doge2’;
var theSameThing = 'doge’;

assert(something === theSameThing);

assert.js:
throw new assert.AssertionError({

AN

AssertionError: ==

at Object.<anonymous> (/Users/adamreis/tmp/test2.js:
at Module. compile (module.js: :26)

at Object.Module. extensions..js (module.js:

at Module.load (module.js: :32)

at Function.Module._load (module.js:

at Function.Module.runMain (module.js:
at startup (node.js: :16)
at node.js:

Current Solution

v8 JavaScript engine stack trace API

/Users/adamreis/tmp/node_modules/better-assert/index.js:37
throw err;

A

AssertionError: something === theSameThing
at Object.<anonymous> (/Users/tmp/test2.js:7:1)

at Module._compile (module.js:456:26)

at Object.Module._extensions..js (module.js:474:
at Module.load (module.js:356:32)

at Function.Module._load (module.js:3212:12)

at Function.Module.runMain (module.js:497:1

at startup (node.js:119:16)

at node.js:962::

Issue

Only works on browsers supporting v8

My Solution: Super-Assert

e \Works on any browser

Best

assert.js:92
throw new assert.AssertionError({
A
AssertionError: Line 7: assert(something === theSameThing);
at Object.<anonymous> (/Users/adamreis/tmp/test2-out.js:7:1)
at Module._compile (module.js:456:26)

at Object.Module._extensions..js (module.js:47

at Module.load (module.js:256:32)

at Function.Module._load (module.js:312:12
at Function.Module.runMain (module.js:497:
at startup (node.js:119:16)

at node.js:¢ :

It even retains original line numbers through a browserify transform!

// test2.js
var assert = require('assert’);

var something = 'doge2’;
var theSameThing = 'doge';

assert(something === theSameThing);

browserify

AssertionError({

gssert(something === theSameThing);
at ers/adamreis/tmp/test2-browserified.
at s (/Users/adamreis/tmp/test2-browserified.js:1:282)
at e (/Users/adamreis/tmp/test2-browserified.js:1:453)
at Object.<anonymous> (/Users/adamreis/tmp/test2-browserified.js:1:471)
at Module._compile (module.js:456:26)
at Object.Module._extensions..js (module.js:474:
at Module.load (module.js:356:32)
at Function.Module._load (module.js:312:12)
at Function.Module.runMain (module.js:497:18)
at startup (node.js:119:16)

Kevin's Woark (get it)

Binary support at Socket.IO level
a number of little bugaroos
weplay.io

socket.io-computer

#..H#

Binary

. could previously emit events with any valid
JSON

« can how emit events that also contain
buffers, blobs, files, and arraybuffers —

arbitrary binary data
o think images, sounds, all the good things

« Socket.IO can do *anything*

Binary II

« most work done on socket.io-parser and protocol

o more complex callback and event based encoding & decoding
objects —> socket.io-parser is completely different

o acknowledgement functions and broadcasting made it extra
complex

o interesting deconstruction and reconstruction of deep JSON with
binary
improved first mplemen‘ra‘ruons speed > two-fold

. backed by new engine.io binary support (base64
fallback is very nice)

Binary III

Class based model ::: why? binary is more complex and asynchronous
so two functions aren't good enough. ALSO: goodbye msgpack.

module.exports.encode function (packet) { /* return string encoding */ }

module.exports.decode = function(str) { /* return event packet */ }

VS

exports.Encoder = Encoder; function Encoder () {};

Encoder.encode = function (packet) { /* return array of encodings */ }
exports.Decoder = Decoder; function Decoder() {}; /* emits ‘decoded’ later

Decoder.add = function (encoding) { /* called whenever encoding received */

}

Decoder.destroy = function() { /* clean up */ }

Binary IV

« Recognizing and translating anything that might be binary
 harder than you want it to be

 Yyou have to dig deep

o related npm module: has-binary-data

 this is recognizing (franslating is relatively similar):

function hasBin (obj) {
if (Buffer.isBuffer(obj) || obj instanceof ArrayBuffer || ..) { return true }
else if (Array.isArray(obj) { /* go through every item */ }
else if (typeof obj == ‘object’) { /* go through every key */ }

return false;

Binary V

things for the user aren't different — they
can how just emit more types of data.

its crazy to see complex and weird things
working on internet explorer 6.

weplay

. Anexample of the new binary feature's
potential

. a pure JavaScript “clone” of twitch plays
pokemon

. Collaborated with Guillermo & Tony, working
on backend and frontend about equally (and
some weird phantom stress testersll)

» http://weplay.io/

http://weplay.io/
http://weplay.io/

Bugs & small additions

« We know Socket.IO has many issues on github
« Here are a few of the smaller things I
contributed:

O

O
O
O

query string parameters in 1.0

Tests ftests tests

documentation, like migration to 1.0

stupid javascript things like fixing bad type
coercion

reducing build size & tricking browserify

socket.io-computer

. a collaborative web-based virtual machine
running windows xp

. Similar stack to weplay (redis, express,
and binary socket.io), but this time I
wrote every part of it and it's turn based

. almost done

o« hitp://emu.weplay.io/

http://emu.weplay.io/
http://emu.weplay.io/

fun for mel!

. learning the ins and outs of socket.io has
made it very easy to use from the user's
perspective

. "Special Magic” things

o hi fi snock uptown

. makes you appreciate how awesome and
cool the project isl

Brian's Work - Testing

e New version of socket.io, many new bugs
e SocketlO is just an abstraction

e Several underlying transport layers

o Websockets
o Polling (XHR, JSONP)
o Flash

e Different code paths for different browsers

Tests need to be...

e cross platform (including desktop, mobile,
tablet)

® Cross browser

® Crossversion

e very fast
o many possible combinations of the above

Zuul to the rescue

Satisfies all of the above

Runs tests concurrently for speed
Abstraction over testing backends
Abstraction over browser/version/OS
selection

Enables unit testing for browser APIls on
different browser implementations

Anatomy of Zuul

Zuul Testing Backend

webdriver <—> webdriver API ,,Virtual

/ 1 \ Machine

zuul binary worker queue Web Browser

N f

node server .
. B tunneling
instances

Brian’s Work

e Better abstraction over non-local testing
backends (other than executing shell
commands)

e Added support for a new cloud backend -
Browserstack

e Generic support for specifying browsers and
platforms

e Reliable concurrency for remote execution

Javascript Concurrency

e Node.js and Browser
Javascript operate using an

event loop
e Node.jsis single threaded

e Simple memory “sharing”

Queue

Javascript Concurrency

e |/O, however, happensina
separate thread

e Cannotuseawhile loop,
must use setTimeout and
callbacks

setTimeout (poll, 3000)

Async Problems

e WebDriver APl end event doesn’t always free
the available slots immediately

e Concurrent requests will sometimes fail

e Solution: Introduction of a worker queue and
status polling

e Coordinate workers by blocking queue while
polling

, Y browserstack X « SO CSINTIE. ui qunit
timeout © bail test/index.]js

Reflections

. contributing real work and being involved
in this community has been really awesome
and an amazing experience a++++

. doge is high motivator \\\\ empirejs

. sometimes to work on a big project you
only need to know a small part

. beyond spring 14

