
Socket.IO & Open 
Academy

making fast human (data)-centric 
interactions on the webs



What is Socket.IO?

● abstract protocol for event-based real-
time applications on the web

● reference implementation in node.js
● uses the most advanced real-time data 

transfer technology available to a specific 
client under the hood



How does “real-time” web programming work?

● Short Polling
○ Repeatedly ask server “Any new data?”
○ Server responds every time

● Long Polling
○ Ask server “Any new data?” and wait patiently for 

response
○ Server only responds when data is ready

● WebSockets
○ Open an instant 2-way communication channel 

between client and server



Why use Socket.IO?

● Each browser supports a different subset 
of “real-time” approaches, so making a 
website for everyone to use is hard.

● Socket.IO abstracts the differences into 
an easy-to-use client & server model for 
the programmer.



How?
● Server:

io.on(‘connect’, function(socket) {

socket.emit(‘hello’, ‘friend’);

});

● Client:
socket.on(‘hello’, function(name) {

assert(name == ‘friend’);

     socket.emit(‘hey’, ‘you’);

});



Anatomy of Socket.IO

socket.io socket.io-client

socket.io-parser
socket.io-protocol

Socket.IO

engine.io engine.io-client

engine.io-parser
engine.io-protocol

Engine.IO
high level & heavier.
custom events, 
namespaces, rooms, 
callbacks

transport-level 
abstraction across 
realtime technologies



Time 4 us & our work

● Columbia’s “Team IO”
○ Brian Shin
○ Adam Reis
○ Kevin Roark

● From facebook and donuts ——> New York 
and … bagels — all in real-time



Goals

● Prepare the release of Socket.IO 1.0
○ Its been at 0.9.x for ~ 2 years.
○ (hint) 1.0 is almost complete!
○ https://github.com/LearnBoost/socket.io/

● Add binary support
● Fast, reliable testing to ensure that new 

versions work properly (server && client)
● Make some issues go away

https://github.com/LearnBoost/socket.io/
https://github.com/LearnBoost/socket.io/


Adam’s Work

Let’s make assertions more useful





Bad





Current Solution

v8 JavaScript engine stack trace API



Better



Issue

Only works on browsers supporting v8





My Solution: Super-Assert

● Works on any browser



Best



It even retains original line numbers through a browserify transform!



browserify



:)





Kevin’s Woark (get it)

● Binary support at Socket.IO level
● a number of little bugaroos
● weplay.io
● socket.io-computer
● # ... #



Binary

● could previously emit events with any valid 
JSON

● can now emit events that also contain 
buffers, blobs, files, and arraybuffers — 
arbitrary binary data
○ think images, sounds, all the good things

● Socket.IO can do *anything*



Binary II
● most work done on socket.io-parser and protocol

○ more complex callback and event based encoding & decoding 
objects —> socket.io-parser is completely different

○ acknowledgement functions and broadcasting made it extra 
complex

○ interesting deconstruction and reconstruction of deep JSON with 
binary

○ improved first implementation’s speed >> two-fold
● backed by new engine.io binary support (base64 

fallback is very nice)



Binary III
Class based model ::: why? binary is more complex and asynchronous 
so two functions aren’t good enough. ALSO: goodbye msgpack.

module.exports.encode = function(packet) { /* return string encoding */ }

module.exports.decode = function(str) { /* return event packet */ }

VS
exports.Encoder = Encoder; function Encoder() {};

Encoder.encode = function(packet) { /* return array of encodings */ }

exports.Decoder = Decoder; function Decoder() {}; /* emits ‘decoded’ later

Decoder.add = function(encoding) { /* called whenever encoding received */ 
}

Decoder.destroy = function() { /* clean up */ }



Binary IV
● Recognizing and translating anything that might be binary
● harder than you want it to be
● you have to dig deep
● related npm module: has-binary-data
● this is recognizing (translating is relatively similar):

function hasBin(obj) {

  if (Buffer.isBuffer(obj) || obj instanceof ArrayBuffer || …) { return true }

  else if (Array.isArray(obj) { /* go through every item */ }

  else if (typeof obj == ‘object’) { /* go through every key */ }

  return false;

}



Binary V

things for the user aren’t different — they 
can now just emit more types of data.

its crazy to see complex and weird things 
working on internet explorer 6.



weplay

● An example of the new binary feature’s 
potential

● a pure JavaScript “clone” of twitch plays 
pokemon

● Collaborated with Guillermo & Tony, working 
on backend and frontend about equally (and 
some weird phantom stress testers!!)

● http://weplay.io/

http://weplay.io/
http://weplay.io/


Bugs & small additions
● We know Socket.IO has many issues on github
● Here are a few of the smaller things I 

contributed:
○ query string parameters in 1.0
○ tests tests tests
○ documentation, like migration to 1.0
○ stupid javascript things like fixing bad type 

coercion
○ reducing build size & tricking browserify



socket.io-computer

● a collaborative web-based virtual machine 
running windows xp

● Similar stack to weplay (redis, express, 
and binary socket.io), but this time I 
wrote every part of it and it’s turn based

● almost done
● http://emu.weplay.io/

http://emu.weplay.io/
http://emu.weplay.io/


fun for me!!

● learning the ins and outs of socket.io has 
made it very easy to use from the user’s 
perspective

● “Special Magic” things
● hi fi snock uptown
● makes you appreciate how awesome and 

cool the project is!!



Brian’s Work - Testing

● New version of socket.io, many new bugs
● SocketIO is just an abstraction
● Several underlying transport layers

○ Websockets
○ Polling (XHR, JSONP)
○ Flash

● Different code paths for different browsers



Tests need to be...

● cross platform (including desktop, mobile, 
tablet)

● cross browser
● cross version
● very fast 

○ many possible combinations of the above



Zuul to the rescue

● Satisfies all of the above
● Runs tests concurrently for speed
● Abstraction over testing backends
● Abstraction over browser/version/OS 

selection
● Enables unit testing for browser APIs on 

different browser implementations



Anatomy of Zuul

zuul binary

webdriver

node server 
instances

Zuul

webdriver API

Testing Backend

Virtual 
Machine

Web Browserworker queue

tunneling



Brian’s Work

● Better abstraction over non-local testing 
backends (other than executing shell 
commands)

● Added support for a new cloud backend - 
Browserstack

● Generic support for specifying browsers and 
platforms

● Reliable concurrency for remote execution



Javascript Concurrency

● Node.js and Browser 
Javascript operate using an 
event loop

● Node.js is single threaded
● Simple memory “sharing”



Javascript Concurrency

● I/O, however, happens in a 
separate thread

● Cannot use a while loop, 
must use setTimeout and 
callbacks

setTimeout(poll, 3000)



Async Problems

● WebDriver API end event doesn’t always free 
the available slots immediately

● Concurrent requests will sometimes fail
● Solution: Introduction of a worker queue and 

status polling
● Coordinate workers by blocking queue while 

polling





Reflections

● contributing real work and being involved 
in this community has been really awesome 
and an amazing experience a++++

● doge is high motivator \\\\ empirejs
● sometimes to work on a  big project you 

only need to know a small part
● beyond spring 14


