
CUDA Support for
KDevelop IDE

Matthew Suozzo
Zuokun Yu

Warp Speed
Introduction to CUDA

What is CUDA?

➔ A Parallel Computing Platform
◆ Based on C/C++
◆ Leverages massively parallel graphics architecture

➔ Proprietary to NVIDIA Hardware

➔ Industry Standard
◆ High-Performance Computing (HPC)
◆ Simulation (Physics, Fluid Dynamics)

What is CUDA?

What is CUDA?

➔ Raw GPU Hardware
◆ NVIDIA Fermi Processor

What is CUDA?

➔ Take the Parallel Architecture…
◆ Streaming Multiprocessors
◆ Dedicated Memory Banks

What is CUDA?

➔ Useful Programming Abstractions
◆ Independent Address Space
◆ Hierarchical Execution Primitives

CPUGPU

What is CUDA?

nvcc Compiler

CUDA C/C++
Code

PTX Device
Executable

x86 Host
Executable

Even More Warp Speed
Intro to KDevelop

What is KDevelop

➔ Open Source IDE

➔ Written in C++

➔ Part of the KDE
Community

KDE 5

➔ Based on Qt Framework
◆ ಠ_ಠ

➔ Application Suite

➔ Plasma Desktop
 Environment

Why KDevelop

➔ Very Low Memory Usage
◆ 3x less than Eclipse

➔ It’s Fast
◆ 2-3x faster than Eclipse

➔ Robust Plugin Ecosystem
◆ Something for Every Language

KDevelop: Plugins

Development

Our Tasks

➔ Basic Support for CUDA Files
◆ KDevelop Recognizing .cu Source

➔ CUDA Syntax Highlighting

➔ CUDA Code Parsing

KDevelop Quirks

➔ “Switch-to-Buddy”
◆ Able to Switch Between .cu and .cuh Files
◆ Handy Feature for Any C-like Language

➔ “Find-in-Files”
◆ Ability to search for text in .cu/.cuh files

Syntax Highlighting

➔ KATE Editor
◆ Part of KDE

➔ XML Syntax Definition
◆ Keywords
◆ Types
◆ Language Constructs
◆ CUDA APIs
◆ Typeahead

KATE the Woodpecker

Code Parsing

➔ KDevelop <= 5.2
◆ Used Custom C++ Parser
◆ ~80,000 Lines of Code

➔ KDev-Clang
◆ Pet Project of Milian Wolff (a Primary Maintainer)
◆ Thin Abstraction Layer Over clang-c API
◆ ~15,000 Lines of Code

➔ Why Clang?
◆ Fast
◆ Reliable
◆ Actively Developed

wyvern the Dragon (LLVM)

Code Parsing

➔ Developed on the KDev-Clang Plugin

➔ All Parsing Done through the “Definition-Use Chain”
◆ Language-Agnostic Program Representation
◆ Used for Syntax Checking, Identifier Indexing, Autocomplete, etc.

➔ Modified the Clang DUChain Builder
◆ Essentially: Changed Conversion from Clang AST to KDevelop AST

The Definition Use Chain

1) 2)
Locked DU Chain

src 1 src 2 src 3

DU Context DU ContextDU Context

DU Context

DU Context

DU Context

TypeBuilder

Context Builder

Declaration Builder Use Builder

Clang AST

➔ Basic AST Format
◆ Type
◆ Decl
◆ Stmt

➔ Leverage Clang’s API

Features
◆ CUDAKernelCallExpr
◆ CUDAGlobalAttr

Ongoing Development

➔ Type inference in Clang
◆ Clang fixit

Qualfiied Identifier
(kdevelop) DeclarationsClang Fixit

fixUnknownDeclaration ???

Additional Clang Work

➔ C Preprocessor Code
◆ Not Migrated to Clang API
◆ Fixes, Refactors, Tests

➔ Additional Unit Tests
◆ Easy Way to Get on a Maintainers’ Good Sides

Post-Mortem

Roadblocks: The Bleeding Edge

➔ KDE 5
◆ Initial Released in July 2014
◆ VERY Sparse Documentation

➔ Clang Parser
◆ Substantial Backend Transition

➔ Maintaining the Environment
◆ Development Toolchains Break

Roadblocks: Code Sprawl

➔ Massive Project
◆ KDevelop: ~160k Lines of Code
◆ KDevPlatform: ~200k Lines of Code
◆ KDev-Clang: ~15k Lines of Code (+ Clang API)

➔ Chicken & Egg
◆ If the IDE isn’t working, hard to navigate the code
◆ Hard to fix the IDE if the you can’t navigate the code

Where is Our Code

➔ Vanilla KDevelop Focused on C++
◆ Additional languages added as plugins

➔ CUDA as a Plugin
◆ Initial steps towards full-fledged support

CUDA Plugin?

Questions?
Thank you to Alex Dymo, Adam, and Jae.

