Ruby on Rails

Open Academy
Spring 2015

Hyonjee Joo, Ben Kogan, James Wen

Overview

e What is Ruby on Rails?
e Small features and fixes
o “time" option for “#touch®
o rake restart
e Main project - Rescuing database errors
o the problem, our solution, demo, and benchmarking

e Rails Ecosystem

e Takeaways

What is Ruby on Rails?

Open Source Web Application Development Framework
Full Stack
MVC (Model-View-Controller)

Why Popular?

Quick Start

CoC (Convention over Configuration) + Structuring
Solid open source community

Popular usage:

- Github - Groupon - Indiegogo
- Airbnb - Hulu - Shopify
- Square - Soundcloud - Pivotal

- Basecamp - Crunchbase - Scribd

‘time option for #touch’

e activerecord ‘#touch' method
o saves record with updated_at/on attributes set to current time or
time specified by optional “:time" parameter
e avoids having to manually change model attribute if anything
besides current time is desired
e example uses: to match two records, set a specific transaction

time, alter modify time, etc.

rake restart

e wraps ‘touch tmp/restart.txt’ into a rake task that can be
executed on the command line

e signals to rails application server to restart

e useful when implementing small changes

e avoids manual restart

Project: Rescuing Database Errors

Lost Queries

DB Transaction

Project: Rescuing Database Errors

e Example of the existing problem:

Suppose that we have a Number model with a unique column called 'i'.

Number.transaction do
Number.create(i: 0)
begin
This will raise a unique constraint error...

Number.create(i: 0)
rescue ActiveRecord::StatementInvalid

...which we ignore.
end

On PostgreSQL, the transaction is now unusable. The following
statement will cause a PostgreSQL error, even though the unique
constraint is no longer violated:

Number.create(i: 1)
=> "PGError: ERROR: current transaction is aborted, commands

ignoreed until end of transaction block
end

Demo

Solution

Savepoint Wrapping

Create Savepoint

v

Execute Query

Failed Successful
query query

Rollback to Savepoint Release Savepoint

\/

Continue...

DB Transaction

Solution

Savepoint Wrapping

Invalid Query

Subsequent
Queries Succeed!

DB Transaction

def protected_query
sp_name = 'query_savepoint'
trans_init = @connection.transaction_status
in_valid_trans_init = (trans_init == 1 || trans_init == 2)
if in_valid_trans_init
create_savepoint sp_name
end

1

2

3

4

5

6

7

8

9 begin

10 result = yield

11 rescue => error

12 #Database command error, do rollback
13 if @connection.transaction_status != 0
14 exec_rollback_to_savepoint sp_name
15 end
16 raise error
17 end
18

19

20

trans_final = @connection.transaction_status
in_valid_trans_final = (trans_final == 1 || trans_final == 2)
21 if in_valid_trans_init && in_valid_trans_final
22 release_savepoint sp_name
23 end
24 result
25 end
26
27 # Queries the database and returns the results in an Array-like object
28 def query(sql, name = nil) #:nodoc:
29 log(sql, name) do

30 protected_query do

31 result_as_array @connection.async_exec(sql)
32 end

33 end

34 end

Benchmarking

e General Framework: ActionDispatch::Performance Test
e Performance of Operations: benchmark-ips gem

e Branches: master vs. postgres-query-savepoints

e Within Test: Regular Queries vs. Transactions

e Run: rake test:benchmark

e [terations/100 ms & lteration/s

Benchmarking Code

class PostgresSavepointTest < ActionDispatch::PerformanceTest
Refer to the documentation for all available options
self.profile_options = { runs: 1, metrics: [:wall_time, :memory, :process_time, :cpu_timel}

test "postgres-savepoints" do

name_id_hash = {}

Benchmark.ips do |x|
x.report("no_transaction_operations") { no_trans_op }
x.report("transaction_operations") { trans_op }

end

end

def no_trans_op
song = Song.new(name: "test", duration: 1, genre: "genre")
song.save
id = song.id
song = Song.find_by(id: id)
song.destroy
end

def trans_op
Song.transaction do
song = Song.new(name: "test", duration: 1, genre: "genre")
song.save
id = song.id
song = Song.find_by(id: id)
song.destroy
end
end
end

Benchmarking Results

Without Savepoints: With Savepoints:

Calculating Calculating
no transaction operations no transaction operations
40.000 1i/100ms 52.000 1/100ms
transaction operations transaction operations
42.000 1/100ms 56.000 1/100ms
no transaction operations no transaction operations
409.431 (+ 8.8%) 1i/s - 2.050k 517.106 (+10.4%) i/s - 2.600k
transaction operations transaction operations

429.502 (£ 9.5%) i/s - 2.150k 553.855 (+ 7.8%) i/s - 2.800k

Benchmarking Analysis/Thoughts

No transaction: (517.106 - 409.431) / 409.431 = .262986926 * 100 = 26.3% slower

Transaction: (553.855 - 429.502) / 429.502 = .289528337 * 100 = 29.0% slower
Back of the Envelope calculations

Quick Github Search: 394,198 instances of (gem ‘pg’) in repos.

Quick Github Search: 86,359 instances of (gem ‘mysql’) in repos.

Quick Github Search: 672,995 instances of (gem ‘sqlite3’) in repos.

34% of Rails users/apps use postgres.

34% of Rails apps will suffer

Acceptable? Not acceptable?

Experiment: Cut down speed decrease (@connection.transaction_status)
Considerations: How many production Rails apps/instances use postgres? How often
are transactions used? How often do Rails apps that use postgres use transactions?

Why PostgreSQL?

e only PostgreSQL blocks after erroring queries within a transaction

MySQL

mysql> start transaction;

Query OK

mysql> select * from fu;

ERROR: Table 'fu' doesn't exist
mysqgl> select ¥ from fun;

1 row in set (0.00 sec)
mysql> commit;
Query OK

PostgreSQL

mydb=# BEGIN;

BEGIN

mydb=# SELECT * FROM fu;

ERROR: relation "fu" does not exist
mydb=# SELECT * FROM fun;

ERROR: current transaction is

aborted, commands ignored until end
of transaction block

mydb=#

END;

ROLLBACK

SQLite

sglite> begin;

sglite> select * from fu;
Error: no such table: fu
sgqlite> select * from fun;
hello!

sglite> commit;

Challenges

e Wading our way through poorly documented code
e Working with Postgres through the PG gem
o determining how deep down into the stack we can determine the
transaction status

o selecting the appropriate synchronous or asynchronous exec methods
for sending queries

e Integrating the new savepoint feature seamlessly without breaking
other expected behavior

o much time spent modifying our solution to pass all previously existing
tests in the activerecord test suite

e Learning Ruby
e Getting familiar with the open source community

Ruby/Rails Ecosystem

Rails and Ruby Gems

Easy to try to contribute, tougher to actually contribute

Liked: Helpful changes, reproducibility, benchmarking, convention
Tech companies that use it a lot also contribute a lot (expected)
Issues + Pull Requests — Rails Core Team Review + Advise + Merge

Get Started/Involved:

- Mailing List

- Google Groups

- Github Repo Watch

- Programs like this (OpenAcademy), Google Summer of Code, etc.

Takeaways

e It's not easy working with a huge code base
e |It'simportant to adhere to the development process
o squash commits
o add changes to CHANGELOG.md
o document new features or fixes
e Ask questions, then ask more questions, and then more
guestions
e Open source isn't always pretty
e You can contribute without knowing the entire picture

Thanks to Professor Jae, Professor
Cannon, and our Rails mentors!

Eileen Uchitelle, Matthew Draper, Aaron Patterson,
Andrew White, Jeremy Kemper

