
Ruby on Rails
Open Academy

Spring 2015

Hyonjee Joo, Ben Kogan, James Wen

Overview
● What is Ruby on Rails?

● Small features and fixes

○ ‵:time‵ option for ‵#touch‵

○ rake restart

● Main project - Rescuing database errors

○ the problem, our solution, demo, and benchmarking

● Rails Ecosystem

● Takeaways

What is Ruby on Rails?
● Open Source Web Application Development Framework
● Full Stack
● MVC (Model-View-Controller)

Why Popular?

● Quick Start
● CoC (Convention over Configuration) + Structuring
● Solid open source community
● Popular usage:

- Github

- Airbnb

- Square

- Basecamp

- Groupon

- Hulu

- Soundcloud

- Crunchbase

- Indiegogo

- Shopify

- Pivotal

- Scribd

‵:time‵ option for ‵#touch‵
● activerecord ‵#touch‵ method

○ saves record with updated_at/on attributes set to current time or

time specified by optional ‵:time‵ parameter

● avoids having to manually change model attribute if anything

besides current time is desired

● example uses: to match two records, set a specific transaction

time, alter modify time, etc.

rake restart
● wraps ‵touch tmp/restart.txt‵ into a rake task that can be

executed on the command line

● signals to rails application server to restart

● useful when implementing small changes

● avoids manual restart

Project: Rescuing Database Errors

Valid Query

Valid Query

Valid Query
Invalid Query

DB Transaction

Lost Queries

!Valid Query

● Example of the existing problem:

Project: Rescuing Database Errors

Demo

Solution

DB Transaction

Create Savepoint

Execute Query

Rollback to Savepoint Release Savepoint

Continue...

Successful
query

Failed
query

Savepoint Wrapping

Solution

Valid Query

Valid Query

Valid Query
Invalid Query

DB Transaction

!Valid Query

Savepoint Wrapping

Subsequent
Queries Succeed!

Benchmarking
● General Framework: ActionDispatch::Performance Test

● Performance of Operations: benchmark-ips gem

● Branches: master vs. postgres-query-savepoints

● Within Test: Regular Queries vs. Transactions

● Run: rake test:benchmark

● Iterations/100 ms & Iteration/s

Benchmarking Code

Benchmarking Results

Without Savepoints:
Calculating

no_transaction_operations

 40.000 i/100ms

transaction_operations

 42.000 i/100ms

no_transaction_operations

 409.431 (± 8.8%) i/s - 2.050k

transaction_operations

 429.502 (± 9.5%) i/s - 2.150k

With Savepoints:
Calculating

no_transaction_operations

 52.000 i/100ms

transaction_operations

 56.000 i/100ms

no_transaction_operations

 517.106 (±10.4%) i/s - 2.600k

transaction_operations

 553.855 (± 7.8%) i/s - 2.800k

Benchmarking Analysis/Thoughts
● No transaction: (517.106 - 409.431) / 409.431 = .262986926 * 100 = 26.3% slower

● Transaction: (553.855 - 429.502) / 429.502 = .289528337 * 100 = 29.0% slower
● Back of the Envelope calculations
● Quick Github Search: 394,198 instances of (gem ‘pg’) in repos.
● Quick Github Search: 86,359 instances of (gem ‘mysql’) in repos.
● Quick Github Search: 672,995 instances of (gem ‘sqlite3’) in repos.
● 34% of Rails users/apps use postgres.
● 34% of Rails apps will suffer
● Acceptable? Not acceptable?
● Experiment: Cut down speed decrease (@connection.transaction_status)
● Considerations: How many production Rails apps/instances use postgres? How often

are transactions used? How often do Rails apps that use postgres use transactions?

Why PostgreSQL?
● only PostgreSQL blocks after erroring queries within a transaction

MySQL

mysql> start transaction;
Query OK
mysql> select * from fu;
ERROR: Table 'fu' doesn't exist
mysql> select * from fun;
+--------+
| c |
+--------+
| hello! |
+--------+
1 row in set (0.00 sec)
mysql> commit;
Query OK

PostgreSQL

mydb=# BEGIN;
BEGIN
mydb=# SELECT * FROM fu;
ERROR: relation "fu" does not exist
mydb=# SELECT * FROM fun;
ERROR: current transaction is
aborted, commands ignored until end
of transaction block
mydb=# END;
ROLLBACK

SQLite

sqlite> begin;
sqlite> select * from fu;
Error: no such table: fu
sqlite> select * from fun;
hello!
sqlite> commit;

Challenges
● Wading our way through poorly documented code
● Working with Postgres through the PG gem

○ determining how deep down into the stack we can determine the
transaction status

○ selecting the appropriate synchronous or asynchronous exec methods
for sending queries

● Integrating the new savepoint feature seamlessly without breaking
other expected behavior
○ much time spent modifying our solution to pass all previously existing

tests in the activerecord test suite
● Learning Ruby
● Getting familiar with the open source community

Ruby/Rails Ecosystem
● Rails and Ruby Gems
● Easy to try to contribute, tougher to actually contribute
● Liked: Helpful changes, reproducibility, benchmarking, convention
● Tech companies that use it a lot also contribute a lot (expected)
● Issues + Pull Requests → Rails Core Team Review + Advise + Merge

Get Started/Involved:

- Mailing List
- Google Groups
- Github Repo Watch
- Programs like this (OpenAcademy), Google Summer of Code, etc.

Takeaways
● It’s not easy working with a huge code base
● It’s important to adhere to the development process

○ squash commits
○ add changes to CHANGELOG.md
○ document new features or fixes

● Ask questions, then ask more questions, and then more
questions

● Open source isn’t always pretty
● You can contribute without knowing the entire picture

Thanks to Professor Jae, Professor
Cannon, and our Rails mentors!

Eileen Uchitelle, Matthew Draper, Aaron Patterson,
Andrew White, Jeremy Kemper

